nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.46 31-37
MOFs/纤维素复合材料的制备及其对有机污染物的降解
基金项目(Foundation):
邮箱(Email): wu.rn@tust.edu.cn;
DOI:
摘要:

金属有机框架(MOFs)本身的晶体结构决定了它多数以粉末形式存在,为了克服其在成型和回收上的不足,将纤维素与MOFs结合成为一种理想的选择。近年来,MOFs/纤维素复合材料因其可再生、高孔隙率、大比表面积以及易成形的特点备受关注。本文主要介绍了MOFs/纤维素复合材料的两种合成方法:原位合成和非原位合成,对该复合材料在降解有机污染物中的应用进行了综述,旨在为MOFs/纤维素复合材料的研究提供参考。目前,对于MOFs/纤维素复合材料的研究多集中在材料制备和性能表征方面,今后还应进一步探讨纤维素基体的性质对MOFs的负载以及复合材料性质的影响;同时,需要进一步探索无纤维素降解的预修饰方法以及MOFs的绿色合成路线,促进MOFs/纤维素复合材料的工业化生产和商业化使用。

Abstract:

Metal-organic frameworks(MOFs) mainly exists in powder form due to its crystal structure. In order to overcome its shortcomings in forming and recycling, the combination of cellulose and MOFs has become an ideal choice. In recent years, MOFs/cellulose composites have attracted much attention due to their reproducibility, high porosity, large specific surface area and easy formability. In this paper, two synthesis methods of MOFs/cellulose composites are introduced: in-situ synthesis and non-in-situ synthesis, and the application of MOFs/cellulose composites in the degradation of organic pollutants is reviewed in order to provide some reference for the research of MOFs/cellulose composites. At present, the research on MOFs/cellulose composites mainly focuses on material preparation and performance characterization. The influence of the properties of cellulose matrix on the loading of MOFs and the properties of composites should be further investigated in the future research. Meanwhile, it is necessary to further explore the pre-modification method without cellulose degradation and the green synthesis route of MOFs to promote the industrial production and commercial use of MOFs/cellulose composites.

参考文献

[1] ZHAO Y L, SUN H, YANG B, et al. Hemicellulose-based film:potential green films for food packaging[J]. Polymers, 2020, 12(8):1775.

[2]李淑芳,石珍旭,甘霖,等.纤维素纳米晶材料构建策略的进展[J].功能高分子学报, 2022, 35(3):221-235.

[3] ABDELHAMID H N, MATHEW A P. Cellulosemetal organic frameworks(CelloMOFs)hybrid materials and their multifaceted applications:a review[J]. Coordination chemistry reviews, 2022,451:214263.

[4]钱学仁.金属有机框架@纤维素纤维(MOF@CFs)复合材料研究进展[C]//2017全国特种纸技术交流会暨特种纸委员会第十二届年会论文集.北京:中国造纸学会,中国制浆造纸研究院, 2017:10.

[5] PAN Y C, LIU Y Y, ZENG G F, et al. Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8)nanocrystals in an aqueous system[J]. Chemical communications, 2011, 47(7):2071-2073.

[6] PU S, XU L, SUN L, et al. Tuning the optical properties of the zirconium-UiO-66 metal-organic framework for photocatalytic degradation of methyl orange[J]. Inorganic chemistry communications, 2015, 52:50-52.

[7] KIM M L, OTAL E H, HINESTROZAET J P. Cellulose meets reticular chemistry:interactions between cellulosic substrates and metal-organic frameworks[J]. Cellulose, 2015, 26:123-137.

[8]吴育杭.金属-有机框架及其衍生碳/纤维素复合材料的制备及其降解性能研究[D].杭州:浙江理工大学, 2023

[9] ASHOUR R M, ABDEL-MAGIED A F, WU Q, et al. Green synthesis of metal-organic framework bacterial cellulose nanocomposites for separation applications[J]. Polymers, 2020, 12(5):1104.

[10] PETERSON G W, LEE D T, BARTON H F, et al.Fibre-based composites from the integration of metal-organic frameworks and polymers[J]. Nature reviews materials, 2021, 6(7):605-621.

[11] REN X H, LIAO G C, LI Z J, et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications[J]. Coordination chemistry reviews, 2021, 435:213781.

[12] ANTON, D. Surface-fluorinated coatings[J]. Advanced materials, 1998, 10(15):1197-1205.

[13] ZHAO Y L, SUN H, YANG B, et al. Hemicellulose-based film:potential green films for food packaging[J]. Polymers, 2020, 12(8):1775.

[14]丁春跃.纸浆纤维点击功能化平台的构建[D].哈尔滨:东北林业大学, 2019.

[15] NIE J Y, XIE H B, ZHANG M Y, et al. Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel[J]. Carbohydrate polymers, 2020, 250:116955.

[16]陈宁,王超,窦云,等.金属有机框架/纤维素纸复合材料的合成及应用研究进展[J].中国造纸,2023, 42(1):121-130.

[17] MATSUMOTO M, KITAOKA T. Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films[J]. Advanced materials, 2016, 28(9):1765-1769.

[18] YANG M L, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon, 2020, 161:517-527.

[19] YILMAZ?, ZENGIN A,?AHAN T. Effective utilization of Fe(Ⅲ)-based metal organic frameworkcoated cellulose paper for highly efficient elimination from the liquid phase of paracetamol as a pharmaceutical pollutant[J]. Environmental technology&innovation, 2021, 24:101799.

[20] MAI T, WANG P L, YUAN Q, et al. In situ anchoring Zn-doped ZIF-67 on carboxymethylated bacterial cellulose for effective indigo carmine capture[J]. Nanoscale, 2021, 13(43):18210-18217.

[21] LIU Y Y, HUO Y, FAN Q, et al. Cellulose nanofibrils composite hydrogel with polydopamine@zeolitic imidazolate framework-8 encapsulated in used as efficient vehicles for controlled drug release[J]. Journal of industrial and engineering chemistry, 2021, 102:343-350.

[22] ZHAO M K, FANG G G, ZHANG S, et al. Template-directed growth of sustainable carboxymethyl cellulose-based aerogels decorated with ZIF-67for activation peroxymonosulfate degradation of organic dyes[J]. International journal of biological macromolecules, 2023, 230:123276.

[23] YUAN Z H, LI F, ZHANG X F, et al. Bio-based adsorption foam composed of MOF and polyethyleneimine-modified cellulose for selective anionic dye removal[J]. Environmental research, 2024,248:118263.

[24] TAN C, LEE M C, ARSHADI M, et al. A spiderweb-like metal-organic framework multifunctional foam[J]. Angewandte chemie international edition,2020, 59(24):9506-9513.

[25] ZHENG Y, ZHU Y L, YU Z Y, et al. Passive thermal regulation with 3D printed phase change material/cellulose nanofibrils composites[J]. Composites part B:engineering, 2020, 247:110332.

[26] ALMASI H, MEHRYAR L, GHADERTAJ A.Characterization of CuO-bacterial cellulose nanohybrids fabricated by in-situ and ex-situ impregnation methods[J]. Carbohydrate polymers, 2019,222:114995.

[27] ZHU H, YANG X, CRANSTON E D, et al. Flexible and porous nanocellulose aerogels with high loadings of meta-organic-framework particles for separations applications[J]. Advanced materials,2016, 28(35):7652-7657.

[28] LANGE L E, OBENDORF S K. Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2metal-organic framework[J]. ACS applied materials&interfaces, 2015, 7(7):3974-3980.

[29] REN W J, GAO J K, CAO L, et al. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants[J]. Chemical engineering journal, 2018,349:766-774.

[30] HAO D D, FU B, ZHOU J C, et al. Efficient particulate matter removal by metal-organic frameworks encapsulated in cellulose/chitosan foams[J]. Separation and purification technology, 2022,294:120927.

[31] ZHOU Z, CHENG B, MA C, et al. Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO2adsorption[J]. RSC advances, 2015, 5(114):94276-94282.

[32] TAO Y H, DU J, CHENG Y, et al. Advances in application of cellulose-MOF composites in aquatic environmental treatment:remediation and regeneration[J]. International journal of molecular sciences, 2023, 24(9):7744.

[33] WU Y, REN W, LI Y, et al. Zeolitic imidazolate framework-67@cellulose aerogel for rapid and efficient degradation of organic pollutants[J]. Journal of solid state chemistry, 2020, 291:121621.

[34] REN Y X, HERSCH S J, HE X, et al. A lightweight, mechanically strong, and shapeable copper-benzenedicarboxylate/cellulose aerogel for dye degradation and antibacterial applications[J].Separation and purification technology, 2022,283:120229.

[35] LIN Y J, WANG Q Q, HUANG Y H, et al. Design of amphoteric MOFs-cellulose based composite for wastewater remediation:adsorption and catalysis[J]. International journal of biological macromolecules, 2023, 247:125559.

[36] EMAM H E, EL-SHAHAT M, ABDELHAMEED R M. Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film[J]. Journal of hazardous materials, 2021, 414:125509.

[37] HUANG J M, HUANG D, ZENG F B, et al. Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes[J]. Journal of materials science, 2021, 56(4):3127-3139.

[38] DUAN C, LIU C R, MENG X, et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOF-199s nanocatalysts for catalytic reduction of 4-nitrophenol[J]. Applied organometallic chemistry, 2019, 33(5):e4865.

[39] LU H L, ZHANG L L, WANG B B, et al. Cellulosesupported magnetic Fe3O4-MOF composites for enhanced dye removal application[J]. Cellulose,2019, 26(8):4909-4920.

[40] YUAN Z H, CHEN Y L, QIU C P, et al. Simple ultrasonic integration of shapeable, rebuildable, and multifunctional MIL-53(Fe)@cellulose composite for remediation of aqueous contaminants[J]. International journal of biological macromolecules,2023, 249:126118.

[41] PATIAL S, SONU, THAKUR S, et al. Facile synthesis of Co, Fe-bimetallic MIL-88A/microcrystalline cellulose composites for efficient adsorptive and photo-Fenton degradation of RhB dye[J]. Journal of the Taiwan institute of chemical engineers2023, 153:105189.

[42] YAO A R, QIU J H, WANG Y F, et al. Synergistic adsorption-Fenton degradation of organic pollutants by MIL-88B/montmorillonite and cellulose nanocrystals functionalized gelatin composite aerogels[J]. Separation and purification technology, 2024, 332:125718.

[43] ZHI L H, LIU H, XU Y Y, et al. Pyrolysis of metalorganic framework(CuBTC)decorated filter paper as a low-cost and highly active catalyst for the reduction of 4-nitrophenol[J]. Dalton transactions,2018, 47(43):15458-15464.

[44] ABDELHAMID H N, MATHEW A P. In-situ growth of zeolitic imidazolate frameworks into a cellulosic filter paper for the reduction of 4-nitrophenol[J]. Carbohydrate polymers, 2021, 274:118657.

基本信息:

DOI:

中图分类号:TB332;X505

引用信息:

[1]杨珊,乌日娜.MOFs/纤维素复合材料的制备及其对有机污染物的降解[J].天津造纸,2024,46(04):31-37.

基金信息:

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索