nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.47 1-8
制浆造纸用低浓盘磨机磨片的研究进展
基金项目(Foundation): 陕西省教育厅科学研究计划项目(24JP031); 陕西省重点研发计划项目(2025GH-YBXM-006)
邮箱(Email):
DOI:
摘要:

盘磨机低浓磨浆过程是制浆造纸纤维性能改善的关键阶段,直接决定成纸的质量。磨片是对纤维施加冲击的核心部件,其齿形设计与选择直接影响浆料质量及磨浆能耗。为了充分把握低浓磨片设计、应用发展脉络及趋势,本文从齿型分类、量化评估、设计及优化方法、先进制造方法等方面对低浓盘磨机磨片进行总结分析。低浓盘磨机磨片量化表征参数主要有磨齿切断长、交错面积、交错长度、交错区域平均数量及空载功率等,而磨片可通过齿型特征进行流程化设计,进而基于磨浆强度、流体力学、先进设计方法及人工智能算法进行优化设计。低浓盘磨机磨片优化设计、材料设计及先进制造工艺的结合将促进我国低浓盘磨机磨片的设计及应用水平。未来高效低能耗磨片的设计应以纤维性能可控及能耗降低为导向,紧紧依托磨浆机理的研究深化与先进设计方法的开发,而磨片行业应以产品供应及技术服务两条主线发展,以“过程评估-磨片优化-运行反馈”模式实现高端磨片的制造及应用。

Abstract:

Low-consistency refining in disc refiners is a critical stage for improving fiber properties in pulp and paper manufacturing, directly determining the quality of the finished paper. Refiner plates(referred to as refiner segments collectively in the paper when not specifically specified) are the core components that exert impact on fibers. The design and selection of their bar profiles directly affect the pulp quality and pulp refining energy consumption. To comprehensively outline the developmental context and trends of refiner plates, low-consistency refiner plates are systematically summarized and analyzed in this paper from multiple aspects, such as bar profile classification, quantitative evaluation parameters, design and optimization methodologies, and advanced manufacturing techniques. Refiner plates can be designed through process-oriented design based on bar profile characteristics, and further optimized based on refining intensity, fluid mechanics, advanced design methods, and artificial intelligence algorithms. The combination of optimized design, material design, and advanced manufacturing processes for low-consistency disc refiner plates will promote the design and application levels of lowconsistency disc refiner plates in China. Furthermore, the future design of high-efficiency, low-energy-consumption refiner plates should prioritize controllable fiber properties and reduced energy consumption. The design and optimization of these plates will be closely tied to deeper research into refining mechanisms and the development of advanced design methodologies. The refiner plate industry should develop with a dual focus on product supply and technical services, implementing a "process evaluation-plate optimization-operational feedback" model to achieve the manufacturing and application of high-end refiner plates.

参考文献

[1] SHARPE P E, RODARMEL J L. Low consistency refiner plate design and selection[J]. Pulp and paper Canada,1988, 89(2):51-57.

[2]何北海.造纸原理与工程[M].北京:中国轻工业出版社, 2010.

[3]刘欢,董继先,韩鲁冰.盘磨机磨区力学研究及进展[J].中华纸业, 2017, 38(20):12-18.

[4] NORDMAN L. The refining of pulp[J]. Paper technology,1968, 9(6):480-484.

[5] LIU H, DONG J X, GUO X Y, et al. Design method of curved-bar refining plates for disc refiner[J]. Paper and biomaterials, 2019, 4(1):40-47.

[6] JORIS G. Le raffinage de la pate a papier:volume 1[M].France:Acieries de Bonpertuis, 1990.

[7]刘欢,董继先,郭西雅,等.低浓磨浆过程等距直齿磨盘齿型参数的设计与选择方法[J].中国造纸, 2022, 41(S1):114-118.

[8] LIU H, DONG J X, JING H, et al. Characterization of the parameters for the refining intensity in terms of performance[J]. Journal of Korea TAPPI, 2019, 51(2):28-40.

[9] LEWIS J, DANFORTH D W. Stock preparation analysis[J]. TAPPI journal, 1962, 45(3):185-188, 192.

[10] KEREKES R J. Energy and forces in refining[J]. Journal of pulp and paper science, 2010, 36(1/2):10-15.

[11] Kerekes R J, Mcdonald J D. Fiber-based characterization of pulp refining[J]. TAPPI journal. 2022, 21(9):497-503.

[12] WULTSCH F, FLUCHER W. Der escher-wyss-kleinrefner als standardprüfger?t für moderne stofu fbere itungsanlagen[J]. Papier, 1958, 13(12):334-342.

[13] ROUX J C, JORIS G, CAUCAL G. Quequlsécueils de al charge sépcifque d’arêtes dans la rafnageàbasse concentration[J]. Rev ATIP, 1999, 53(1):3-9.

[14] LIU H, ROUX J C, DONG J X, et al. Physical meaning of cutting edge length and limited applications of specific edge load in low consistency pulp refining[J]. Nordic pulp&paper research journal, 2020, 37(2):250-263.

[15]刘欢, ROUX J C,董继先.磨齿切断长及比边缘负荷理论的理解及应用[J].中国造纸学报, 2022, 37(S1):162-169.

[16]刘欢,董继先, ROUX J C,等.盘磨机低浓磨浆过程强度表征的有效性及应用[J].中国造纸, 2023, 42(7):57-62, 152.

[17] MELTZER F. Refning technology[M]. Leatherhead:Pira International Ltd, 2000.

[18] ROUX J C, BLOCH J F, BORDIN R, et al. The net normal force per crossing point:a unifed concept for the low consistency refning of pulp suspensions[C]//I’ANSON S J, ed.Transaction of the 14th Fundamental Research Symposium, Oxford, 2009. Manchester:FRC, 2018:51-83.

[19] ELAHIMEHR A, OLSON J A, MARTINEZ D M, et al. Estimating the area and number of bar crossings between refiner plates[J]. Nordic pulp&paper research journal,2012, 27:836-843.

[20] LIU H, ROUX J C, DONG J X, et al. Refining intensity and dynamics of low consistency pulp refining utilizing straight bar plates with dams[J]. Cellulose, 2023, 30(15):9793-9814.

[21]刘欢.等距直齿磨盘磨浆过程强度模型及磨浆动力学研究[D].西安:陕西科技大学, 2022.

[22] CHARUEL R, ROUX J C, DE AGOSTINI F, et al. Influence de la geometrie des lames sur le raffinage des pates chimiques[J]. Rev ATIP, 1988, 42(4):153-160.

[23] LIU H, DONG J X, GUO X Y, et al. no-load power of disc refiner in low consistency refining[J]. Journal of Korea TAPPI, 2020, 6(2):87-96.

[24] NASAB N R, OLSON J A, HEYMER J, et al. Understanding of no-load power in low consistency refiners[J]. Canadian journal of chemical engineering, 2014, 92(3):13-18.

[25]吴元进.动力钢磨磨片改进设计的探讨[J].农业机械学报, 1965(1):35-40.

[26]沈立新.盘磨磨片齿型的设计(上)[J].纸和造纸, 1999(4):22-23.

[27]沈立新.盘磨磨片齿型的设计(下)[J].纸和造纸, 1999(5):23-24.

[28]沈立新.盘磨磨片齿型的设计与选择[J].纸和造纸,1998(6):30-32.

[29]苏昭友,王平.盘磨机磨片的设计理论与方法[J].纸和造纸, 2011, 30(8):10-16.

[30]王佳辉,王平,王洪斌,等.盘磨机直齿磨片的设计与选择[J].中华纸业, 2015, 36(4):10-15.

[31]徐登伟,周定国.草木纤维一步分离磨片设计初探[J].木材加工机械, 2012, 23(3):26-29.

[32]梁钱华.一种盘磨机磨片的新颖设计[J].中华纸业,2014, 35(24):33-34.

[33]王成昆,王平.对数螺旋线在磨浆机磨齿设计中的应用[J].中国造纸, 2015, 34(9):37-41.

[34]郭西雅,董继先,刘欢,等.质量功能展开法在盘磨机磨片设计中的应用[J].中国造纸, 2019, 38(12):43-48.

[35]祁凯,董继先,刘欢,等.造纸法烟草薄片磨浆专用磨片的研究与应用[J].中国造纸, 2021, 40(1):55-61.

[36]董继先,刘欢,郭西雅,等.一种等距弧形齿磨盘设计方法:CN201811280606.X[P]. 2018-10-30.

[37]董继先,刘欢,郭西雅,等.一种三级放射型弧形齿磨盘设计方法:CN201811280609.3[P]. 2018-10-30.

[38] LIU H, DONG J X, GUO X Y, et al. Design method of curved-bar refining plates for disc refiner[J]. Paper and biomaterials, 2019, 4(1):40-47.

[39]刘欢,董继先,郭西雅,等.基于比边缘负荷理论的等距直齿磨片齿型参数设计的研究[J].中国造纸, 2019, 38(10):38-42.

[40]董继先,刘欢,段传武,等.一种基于SEL的等距直齿磨盘的设计方法:CN201910989592.7[P]. 2019-10-17.

[41]刘欢,蒲永平,董继先,等.一种含挡坝等距直齿磨盘齿型设计方法、系统及存储介质:CN202210977513.2[P].2022-08-15.

[42]刘欢,蒲永平,董继先,等.一种等距直齿磨盘齿型设计方法、系统及计算机存储介质:CN202210975628.8[P].2022-08-15.

[43]刘欢,董继先,郭西雅,等.低浓磨浆过程等距直齿磨盘齿型参数的设计与选择方法[J].中国造纸, 2022, 41(S1):114-118.

[44]尉迟学墉.基于磨浆强度理论的磨片设计与选择方法的研究[D].天津:天津科技大学, 2017.

[45]刘欢,董继先,蒲永平,等.基于磨齿滑动长度的比边缘负荷计算软件V1.0[CP]. 2023SR0002916,中国版权保护中心, 2023-01-03.

[46]刘欢,董继先,蒲永平,等.等距直通齿磨盘低浓磨浆过程强度计算软件V1.0[CP]. 2023SR0002921,中国版权保护中心, 2023-01-03.

[47]刘欢,董继先,乔丽洁,等.非零倾角放射型直齿磨盘齿型参数化计算软件V1.0[CP]. 2024SR0215604,中国版权保护中心, 2024-02-01.

[48]刘欢,蒲永平,董继先,等.螺旋线磨盘齿型基本参数计算软件V1.0[CP]. 2024SR0215524,中国版权保护中心,2024-02-01.

[49]刘欢,蒲永平,董继先,等.磨盘圆弧磨齿基本参数计算软件V1.0[CP]. 2024SR0215672,中国版权保护中心,2024-02-01.

[50]刘欢,董继先,韩鲁冰.盘磨机磨区内纸浆流动研究与进展[J].中国造纸, 2017, 36(9):66-73.

[51]董继先,段传武,刘欢,等.基于CFD的挡坝参数对磨区浆料流动的影响[J].陕西科技大学学报, 2022, 40(2):144-152.

[52] DUAN C W, DONG J X, LIU H, et al. Effect of dam number on the pulp flow in the low consistency disc refiner[C]//TAN J R. Proceedings of the 2011 international conference on mechanical design:advances in mechanical design. Singapore:Springer, 2021:1203-1223.

[53]杨瑞帆,董继先,刘欢,等.磨齿倾角对等距直齿磨盘磨区流动参数影响的数值模拟研究[J].中国造纸, 2021,40(5):69-76.

[54]刘庆立,汤伟,吴九汇,等.采用粒子追踪技术的盘磨机微观磨浆机理研究[J].中国造纸, 2020, 39(2):46-52.

[55]马洪斌,马岩,杨春梅.蒙特卡罗法在热磨机磨片优化设计中的应用[J].森林工程, 2012, 28(5):28-32.

[56]郭西雅.盘磨机磨盘齿形预测及其参数化设计系统的研究[D].西安:陕西科技大学, 2021.

[57]向红亮,罗吉荣.纸浆盘磨机磨片制造方法及材料分析[J].现代铸铁, 2002(4):25-27.

[58]朴东学.高铬白口铸铁基体组织与抗磨性能[C]//中国铸造协会.聚焦新质生产力加快铸造行业高质量发展:第二十届中国铸造协会年会论文集.上海:《铸造工程》杂志社, 2024:94-98.

[59]黄钧声.我国高铬抗磨白口铸铁磨片材料的发展[J].现代铸铁, 2007(1):81-84.

[60]狄崇祥.新型马氏体相变耐磨材料研发[D].青岛:青岛科技大学, 2023.

[61]郭娟,王平.磨浆机磨片的新型成型工艺与表面强化处理[J].中国造纸, 2016, 35(6):75-79.

[62]吴江.基于铁型覆砂技术的热磨机磨片的研发[D].杭州:浙江工业大学, 2015.

[63] Parason Machinery. Refining plates&filling[EB/OL].[2025-06-15]. https://www. parason. com/products-andwear-parts/refiner-plates-fillings.

[64]张辉,李忠正.盘式磨浆机技术研究进展与趋势[J].中国造纸, 2007(10):40-45.

[65]刘欢,董继先,罗冲,等.盘磨机磨片粗糙化改性及其磨浆性能的研究综述[J].中华纸业, 2019, 40(14):20-25.

[66]蒋小军,严震,赵杨,等.粗粒多元合金磨片的粗糙化磨浆机理[C]//中国造纸学会.中国造纸学会第十九届学术年会论文集.北京:《中国造纸学报》编辑部, 2020:366-369.

基本信息:

DOI:

中图分类号:TS733

引用信息:

[1]刘欢,刘洪斌,董继先,等.制浆造纸用低浓盘磨机磨片的研究进展[J].造纸与纤维材料,2025,47(02):1-8.

基金信息:

陕西省教育厅科学研究计划项目(24JP031); 陕西省重点研发计划项目(2025GH-YBXM-006)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索